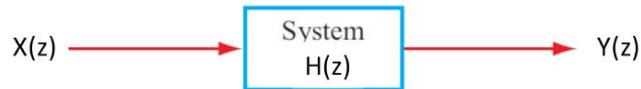


EECS 360
Spring 2021
Discrete Filtering

1. Given $X(z) = 5 + 4z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$ find $x[n]$.
2. Show that $X(z) = 5 + 4z^{-1} + 3z^{-2} + 2z^{-3} + 1z^{-4} = \frac{5z^4 + 4z^3 + 3z^2 + 2z + 1}{z^4}$
3. Given $X(z) = \frac{z^4 + 2z^3 + 3z^2 + 4z + 5}{z^4}$ find $x[n]$.
4. A system is described by $y[n] = x[n] + 2x[n-1] + .75y[n-1] - .125y[n-2]$
 - a. Find the transfer function $H(z)$.
 - b. Find the poles and zeros.
 - c. Draw the pole-zero diagram.
 - d. Is this a stable system?
5. Is a system with a transfer function $H(z) = \frac{z(z+2)}{(z-1.5)(z+.5)}$ stable and why?
6. Given a system transfer function $H(z) = \frac{z^2}{(z - (.5 + j.8))(z - (.5 - j.8))}$
 - a. Draw the pole-zero diagram.
 - b. Is this a stable system?
 - c. An analog signal $x(t) = \cos(2\pi 160t)$ is sampled at 1000 samples/sec to form $x[n]$. Find the output $y[n]$ with $x[n]$ input to this filter.
 - d. This a BPF, what is its center frequency.
 - e. What is the discrete time implementation of this system?
 - f. Confirm your answer using
<http://demonstrations.wolfram.com/TransferFunctionAnalysisByManipulationOfPolesAndZeros>
7. Design a discrete time system, that is find $H(z)$ and its discrete time implementation to reject an analog signal $x(t) = \cos(2\pi 160t)$ which is sampled at 1000 samples/sec to form $x[n]$. Validate your design using
<http://demonstrations.wolfram.com/TransferFunctionAnalysisByManipulationOfPolesAndZeros>
This tool may not let you get the exact zero locations, so use it to get close to your design answer.
8. Given $H(z) = \frac{z^2}{z^2 - 2r\cos(\theta)z + r^2}$ show that the poles are at $r\cos(\theta) \pm jr\sin(\theta)$.

9. Given an open loop transfer function $H(z) = \frac{z}{z-5}$ find the feedback system, $G(z)$, that will stabilize $H(z)$.



(a) **Open-loop system**

